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We propose a physical interpretation of the second level of the combinatorial 
hierarchy in terms of three quarks, three antiquarks, and the vacuum. This 
interpretation allows us to introduce a new quantum number, which measures 
electromagnetic mass splitting of the quarks. We 6xtend our argument by 
analog to baryons, and find some SU(3) and some new mass formulas for 
baryons. The generalization of our approach to other hierarchy levels is 
discussed. We present also an empirical mass formula for baryons, which seems 
to be loosely connected with the combinatorial hierarchy. 

1. I N T R O D U C T I O N  

The combinator ia l  h ierarchy is a mathemat ica l  structure recently 
investigated by Ted  Bastin, H. Pierre Noyes,  John  Amson,  and  Clive W. 
Kilminster  (Bastin and  Noyes,  1978; Noyes,  1979; Bastin et al., 1979), who  
a t tempted to interpret  it in terms of e lementary particle systems. The 
combinator ia l  hierarchy is supposed to represent a classification scheme 
for  states of matter,  and  each level of the hierarchy is believed to be 
connec ted  with different class of interactions, together combin ing  strong, 
electromagnetic,  and  gravitat ional  interactions into a single picture. We 
shall review for convenience  the main  properties of the combinator ia l  
hierarchy. 

Consider  the group of N-tuples x = ( x l ,  x2 , . . . ,  XN) with x k ~ Z 2  = {0, l )  
under  addition, modulo  2. Discrimination D between elements x and  y is 
defined as 

DCx, y )  = ( x l ,  x 2 . . . . .  xiv) + ( Y , ,  Y2 . . . . .  Y~v) 

= (x l  +Yl,  x2 +Y2 . . . . .  xN+YN)  (1.1) 
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A subset S C_ Z~ v is said to be discriminate& closed if for all x, y E S, if x ~ y  
then D ( x , y ) E S ,  that is, if by  adding two N-tuples belonging to S we 
always end up with a third different N-tuple also belonging to S. Note  that 
the neutral element e 0 = (0, 0 . . . . .  0) does not belong to any discriminately 
dosed  subset (DCsS for short). The act of discrimination between two 
N-tuples can be viewed as a method by which the quantum numbers of 
two physical systems can be compared at a (supposedly prespaciotem- 
poral) locus. 

However, the act of discrimination as such and the existence of 
discriminately closed sets, even if somehow applicable to the realm of 
elementary particles in some abstract  form, would perhaps not be of great 
interest. The physical relevance of the above presented simple systems lies 
in the fact that it is possible to construct a finite sequence of hierarchial 
systems of increasing complexity, which together are called the combina- 
torial hierarchy. It  consists of four levels. The first level is represented by 

e = 1 columns of dimension n = 2 ;  explicitly they are 1 (o)' e 2 = ( ~  ' and 

e 3 =(11). It  is obvious that out of these elements can be formed three 

discriminately closed subsets, namely, sets (el}, (e2}, and {el, e2, e 1 + e  2 = 
e3}. It  is also easy to verify that  generally for N basis elements, 2 I v -  1 
DCsS can be formed. In this context the term "basis elements" refers to 
dements  which through successive discrimination generate all the other 
elements of the discriminate system under consideration. For  example, the 
basis elements at the first level of the combinatorial hierarchy are e~ and 
e 2. Naturally the basis elements can be chosen in many ways. 

The next (second) level of the combinatorial  hierarchy is obtained by 
taking the three DCsS of the first level to form the basis elements of the 
second level. Then at the second level there are 2 3 -  1 = 7 elements as well 
as DCsS. These in their turn serve as the basis for a third level, where 
27 - 1 = 127 DCsS can be formed. Finally, at the fourth level there are 127 
basis elements and 2127- 1~103s DCsS. 

If 2 N -  1 DCsS are to form the basis of the next level, it is convenient 
to map them to columns of some height. In  practice this is done by  2 N -  1 
nonsingular (in order to preserve the structure of the preceding level), 
linearly independent matrices, which map each column in one of the DCsS 
onto itself. The elements of these matrices can then be rearranged into 

TABLE I. Some properties of different levels of the combinatorial hierarchy. 

Level I II III IV 

No. of basis elements 2 3 7 127 
No. of DCsS 3 7 127 ~103s 
Dimension of elements 2 4 16 256 
Cumulative sum of DCsS 3 10 137 ~ 1 0  38 
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columns, (by some convention)of height n 2, if the height of the columns in 
the preceding level is n. Note that this process terminates if the number of 
DCsS, 2 N -  1, is greater than the number of elements (n 2) in the mapping 
matrices, since for matrices of dimension n there are only n 2 that are 
linearly independent. This is why the fifth level of the hierarchy cannot be 
reached: there are only (256) 2 linearly independent matrices available, 
while the number of DCsS was seen to be 1038. Since the preceding level is 
in a sense contained in the following level, the characteristic cardinal of 
each level is-the cumulative sum of the inverse values of superstrong, 
strong, electromagnetic, and gravitational coupling constants can be seen. 
These values, together with other numerology, are collected in Table I. 

2. PHYSICAL INTERPRETATION OF THE SECOND LEVEL 

We now turn our attention to the second level. It can be shown ~ 
(Bastin and Noyes, 1978), that the second level will always be, up to a 
permutation of rows 

[il[i [!l [!]l!][!] (2.1) 

Bastin and Noyes interpret the values of elements in each column to 
represent presence (=1)  or absence (=0)  of some quantum number. 
Specifically they interpret the second level as bosonic systems, like baryon 
-ant ibaryon pairs or mesons. 

We propose an alternative interpretation which, in our view, results in 
a more consistent picture, and besides, leads to suggestive concrete predic- 
tions. Bastin and Noyes, in their interpretation of the elements of columns 
as representatives of physically observable quantum numbers, are naturally 
led to regard the discarded column (0, 0, 0, 0) as the vacuum. However, this 
needs not to be the case. In our view, the elements of the hierarchy give the 
possible names of some abstract internal properties of space-times do- 
mains (or points), independently whether these domains exist or not. The 
internal labels of these names, which characterize the names and differenti- 
ate them for each other, need not be physically observable; neither need 
they represent any abstract quantum number. In fact, they do not even 
exist independently but only in relation to labels in other names, and they 
are made meaningful only through the act of discrimination. On the other 
hand, i f  the hierarchy is supposed to represent internal properties of 
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space-time domains, it certainly would be reasonable to expect "'vacuum- 
ness" to be included in the hierarchy. Moreover, fermionic systems are 
more elementary than bosonic in the sense that bosonic systems can be 
build up from fermionic systems but not vice versa. Guided by these 
considerations we are led to try to interpret the second level in terms of 
elementary fermions, i.e., quarks and antiquarks, and the vacuum. 

As can be seen from equation (2.1), the first two elements in the 
columns are always (11)or (0~ This fact can be viewed as a kind of 
reduction of dimension, since the second level happens to be isomorphic to 
first level of another hierarchy beginning with columns of dimension three. 
The three-dimensional first level is given by 

Iil I!l I!l IYI Iil e I = ' e 2  ---- , e 3  ---" , e 4  = , es = , 

e6-~ , e 7 ~  1 

1 
(2.2) 

A hierarchial system can be constructed by starting from this level. 
The next level is nine-dimensional, and there this hierarchy terminates. For 
the sake of simplicity, we choose to work with the first level of the 
three-dimensional representation rather than with the four-dimensional 
second level. However, this choice in no way affects the results we shall 
obtain. 

Our interpretation is the following. We choose basis elements ep e 2, 
and e 3 to represent quarks u h, d h, and s h, respectively, where the subscript 
h indicates that the quarks are defined within the hierarchy. We define 
antiquarks as boolean duals of quarks, that is, if qh is a quark, then the 
respective antiquark is ?/h = qh + eT, where the addition is modulo 2, whence 
fib=e4, d~=es, and gh=e6. The seventh element, eT, is then the name of 
the vacuum. This is also reflected by the fact that D(q h, ,Th)=eT, which, 
perhaps, indicates the possibility of a quark-antiquark annihilation. 

Physical quarks are, however, labeled by the values of physically 
observable quantum numbers (which, among other things, do not obey 
modulo 2 algebra). Physical vacuum is always represented by the null 
element in the space spanned by generators of quark quantum numbers. 
The problem we are faced with is that of connecting the names of the 
quark states in the hierarchy to quantum number labels of physical quarks. 
In doing this, we shall assume that the information content of the names of 
the hierarchy states is maximal, or in other words, that for every compo- 
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nent of colunms in the hierarchy there exists (but not necessarily corre- 
sponds to) a dimension in the physical quantum number space. Thus eyery 
element of a column belonging to the hierarchy carries information about 
three different quantum numbers. We must only rename every label. 

Physical quarks are labeled by their hypercharge Y and third compo- 
nent of their isospin. According to our proposal, the hierarchy quarks carry 
a piece of their total Y or 13 in every component of the column correspond- 
ing to the hierarchy quark. The total quantum numbers of the vacuum 
must be zero. Effectively, the renaming of the hierarchy labels can be done 
with a suitable 3 • 3 matrix R which transforms the hierarchy labels into 
physical labels. We write R as 

R =  

13,1 13,5 I3,~] 
I:1 Y2 r3] 
Cl 62 C 3 

(2.3) 

C represents a property thus far undefined. In order that the vacuum e 7 
would be transformed to the physical vacuum (0, 0, 0) the sum of every row 
in equation (2.3) must be zero. Note that this defines the geometry of the 
quark quantum number space; only the scale remains arbitrary [as it does 
in SU(3), too]. To get the fight quark quantum numbers, we then choose 
13, 3 = 0, which implies (after fixing the scale) that/3,  i = - /3,2 = - 1/2; also 
we set YI = Y2 = 1/3 and Y3=-2 / / 3 .  Then we find that, e.g., the name 
"uh"  is indeed motivated since it now has the right quantum numbers of 
the physical u quark. The role played by the property " C "  is clarified in 
the next section. 

3. MASS GENERATION FROM THE HIERARCHY STATES 

We have now found that it is at least consistent to interpret the second 
level of the hierarchy as corresponding to three quarks, three antiquarks, 
and the vacuum. Moreover, by demanding that the information content in 
the hierarchy is maximal, we have achieved an extra dimension compared 
with SU(3). This "C"-ness  is a genuine product of the hierarchy, but we 
should somehow be able to check whether it is consistent to add to quark 
quantum numbers a new one. 

Let M 0 be a real diagonal 3 • 3 matrix. We merely note that 

(~h)TMoqh = 0 (3.1) 

for every q (T is a transpose). If we now transform the states qh to physical 
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statesqphy s by transformation R, with R as before, 

1/2 - 1 / 2  0 
R= 1/3 1/3 -2 /3  

C 1 C 2 - ( C 1 + C 2 )  

(3.2) 

we get, instead of equation (3.1), 

qThys Moqplays = q TR TMo Rqh =-- m q ~/: 0 (3.3) 

Therefore we are led to postulate that transformation R, corresponding to 
renaming of the hierarchy labels, generates m a s s e s  mq for the quarks. Let 
M o = ( - M 1 , - M 2 , -  M3), where Mk's are real parameters (and the minus 
signs only a convention). Then from equation (3.3) we get explicitly 

m q= 132, q m  I "6- y 2 M  2 31- Cq2m3 (3.4) 

where 13, q, Yq, and Cq refer to the quantum numbers of the quark q. From 
equation (3.4) we get immediately 

m d - - m , = ( C 2 - - C 2 ) M 3  (3.5) 

which illustrates the role played by the property C. However, these 
conjectures are not yet testable. But since the mass formula, equation (3.4), 
depends on at least two additive quantum numbers we can, supposing that 
also C is an additive quantum number, extend this procedure to hadrons. 

From SU(3) we know how the hadrons are built up. It is then 
straightforward to extend equation (3.4) first to baryons. Let a baryon state 
to be described by B = q p h y s ,  1 -I-qphys, 2 "t-qphys, 3. The mass formula for 
baryons is then by analog 

m(Bk)= ~,, E(q~ + BrM(ok~B (3.6) 
qEB 

where/~ is the antibaryon obtained by adding up the respective antiquarks. 
In the first term on the right-hand side of equation (3.6) we have taken into 
account the fact that quarks move inside hadrons. E(q k) can be understood 
as the kinetic energy contribution of the quark q to the baryon mass. By 
index k we denote different SU(3) representations; since we have obtained 
equation (3.6) only by analog, we cannot be sure that the parameters of the 
matrix M 0 are the same within different representations. We can only 
demand that 34(o *) is real and diagonal. 
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From equation (3.6) we get several mass formulas for baryons; for 
example, for the state I 3 = 1/2, Y= 1 we get 

m(k)(1/2, 1)=2E~ (k) + E jk) + 1Jt/t(k) ~.,, +M(2 k)-(2C, +C2)2M3 (k) (3.7) 

The sign convention for the parameters of M(o k) is the same as it was with 
the quarks. Similar formulas as equation (3.7) can of course be written for 
other states. It is then straightforward to arrive at electromagnetic mass 
differences like, for example, 

m ( -  1/2,  1) - r e ( l / 2 ,  1) =Ea-Eu+3(C 2 -  C2)M3 (3.8) 

where we have dropped the index k for convenience. Together these 
differences give the well-known SU(3) result 

m(Y.~ (3.9) 

Note that equation (3.9) should be satisfied not only by octet masses but 
also by decuplet masses. Experimentally 1 for decuplet left-hand side (LHS) 
is ~ -  2 MeV and right-hand side (RHS) (where, naturally, n and p are 
replaced, respectively, by A ~ and A §  - -4 /3  MeV, supposing--reasonably 
we bel ieve-- that  r e ( A - ) - m ( A  + + ) ~  - 4  MeV. 

For decuplet we get also the SU(3) result, 

3[ m(A +) -- m(A~ ] = m ( A - ) - m ( A  + +) (3.10) 

but not the SU(3) result m(E~176 which is not 
well satisfied (experimentally LHS is ~ -  0.2 MeV and RHS = - 3 . 2  MeV). 

As we have seen in equation (3.5), the difference C 1 - C  2 measures 
electromagnetic mass splitting. If we set CI~C 2 (which also implies E u ~  
Ed), we can expect to get mean masses of different charge states. Then for 
decuplet, putting I3(A)= 3/2,  we obtain 

3m(E)  + m ( e )  = m(A) + 3 m (~)  (3.11) 

which is somewhat better than the usual SU(3) equal mass spacing rule. 
Experimentally the difference L H S - R H S  = 5.8 MeV. (As one would ex- 
pect, this formula has been presented earlier in the literature, though 
derived from totally different premises; see Bisiacchi and Fronsdal, 1966). 

However, for octet we do not get any mass formula for mean masses 
of charge states. Besides, there is no mass difference between A and R ~ 

1All experimental values quoted in this paper are from Particle Date Group, 1978. 
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For mesons there are too many free parameters, and no mass formulas 
arise. In spite of these shortcomings, we believe that mass relations 
(3.9)-(3.11) strengthen our interpretation as outlined in Section 2, and that 
our approach to the interpretation problem of the combinatorial hierarchy 
is basically sound. Therefore we are left with generalizing the procedure we 
used in Section 2 to other hierarchy levels. This will be discussed in the 
next section 

4. INTERPRETING OTHER LEVELS 

Ideas presented in Section 2 can be extended to other levels. Consider 
the first level. Bastin and Noyes interpret the three columns e1=(01), 
e2 = ( 0 ), and e 3 = ( 1 l ) to represent, respectively, charge states Q = + ,  Q = - ,  
and Q =  _ ;  they take the first element of the column to correspond to 
presence or absence of charge Q = + and the second to Q = - .  However, 
since one of the main attractions of the combinatorial hierarchy is the 
appearance of suggestive cumulative sums of DCsS (see Table I), one 
would expect the appearance of charge to be connected with the third level 
rather than the first. Moreover, Bastin and Noyes are guided in their 
interpretation by the belief that charge, baryon number, and lepton num- 
ber are all absolutely conserved, and of course, experimentally this is well 
known to be true. However, within grand unified theories there are serious 
theoretical expectations concerning nonconservation of baryon and lepton 
numbers (for some reviews of grand unified theories, see Pati, 1978; Fritz 
and Minkowski, 1975; Georgi and Glashow, 1974.) 

To conform with these expectations, we believe fermion number to be a 
more significant quantity than baryon or lepton numbers. Then the first 
level can easily be interpreted as a fermion and an antifermion, and the 
column ( ~ ) is again representing the vacuum. 

Since the weak coupling constant does not arise in the combinatorial 
hierarchy in the same way as other coupling constants (i.e., as cumulative 
sums of DCsS), it would be tempting to exclude leptons from the hierarchy 
classification and consider it as a classification scheme for hadrons only. 
However, it is fair to remind the reader that these conjectures are very 
speculative. 

Because of the purely fermionic character of the first level, we could 
say that it is associated with spin. Similarly, the second level, because of its 
strong interaction character, can be associated with color. The third level 
has, after the subtraction of the vacuum, 126 particle states. One could try 
to relate these states either to new particles or to conventional hadrons. 
(Out of three quarks and antiquarks we can build 27 + 27 + 9 = 63 baryon 
and meson states, and with an additional two-valued quantum number we 
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get altogether 126 states). This level should be connected with charge. The 
fourth level we associate, following Bastin and Noyes, with gravity. Thus 
every level is, in the absence of dynamics, associated with an unbroken 
symmetry while the contents of levels perhaps describe symmetries that are 
broken (for fermion number violation in grand unified theories, see Pati et 
al., 1975; Fritz and Minkowski, 1975). 

To justify the connection of the level with (unbroken) symmetries and 
at the same time to illustrate the name aspect of the hierarchy elements, 
consider, to take an example, a Hilbert space with eight orthogonal state 
vectors, labeled by le0 ~, [el ) . . . .  , [e7) , where e 0 is the neutral dement  and 
eg's (k-- 1 . . . . .  7) are the columns of Section 2 obeying algebra modulo 2 
and forming the second level of the hierarchy. Quantum number conjuga- 
tion C can then be defined by 

Clek> =[ek q-e7) =[ek )  

Clek) ----[ek+e7) = l e t )  

But vacuum is not self-conjugate: 

Cle7) =leo), Cleo)=[e7) 

(4.1a) 

(4.1b) 

(4.2) 

Then, in a Hilbert space we must define the physical vacuum as 

10) -- 1/(2)w2(le0) + [e7)) (4.3) 

while the state orthogonal to it is 

Ix)  = 1/(2)1/2(1eo) - [ e7~  ) (4.4) 

Here Ix)  is a state not appearing in the hierarchy, having the conjugation 
property C lx) = - I x ) .  It would be tempting to interpret this as a quan- 
tum associated with, but not belonging to, the second level. The ap- 
pearance of a similar "quantum" in Hilbert space holds true for every 
level, but of course this is pure guesswork and the details must be worked 
out later. 

5. DISCUSSION 

In conclusion, we have shown that the second level of the combina- 
torial hierarchy can consistently be interpreted in terms of three quarks, 
three antiquarks, and the vacuum. Our technique was outlined in Section 2 
and further tested for consistency in Section 3. In Section 4 we sketched a 
possible generalization to other hierarchy levels. For more quarks, one can 
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postulate a second combinatorial hierarchy where there is a new triplet of 
quarks at the second level, say, c, b, and t, etc. 

It is interesting to note that the combinatorial hierarchy may reflect 
the structure of gauge hierarchies. For  example, the breaking of the second 
level clearly corresponds to breaking of SO(7) or SO(6) to SU(3)x  U(1), as 
transformation (3.2) maps the representation 7 of SO(7) to the same 
elements as it does with the second level states. Furthermore, breaking of 
the third level can then be understood (being probably effectively seven 
dimensional only; see Bastin et al., 1979) as breaking of 126-dimensional 
representation of a group of rank 7. This drastically limits possible inter- 
pretations. The only anomaly-free choice seems to be representations 
28+28* +70  of SU(8), which could then be broken into SU(2)x  U(1)x 
SU(5), for example. 

The fact that the hierarchy at the fourth level explodes into a terrify- 
ing number of states (probably at least several, even tens of orders of 
magnitude) is somewhat disturbing but of course not experimentally ex- 
cluded. 

We did not utilize the knowledge of hierarchy level "coupling con- 
stants"; however, if they really can be interpreted as physical coupling 
constants, it is obvious that they should play a central role in constructing 
hierarchy dynamics. In the Appendix we present a mass formula loosely 
based on this knowledge, which produces extremely accurately the whole 
P-wave baryon spectrum. 
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APPENDIX:  M A S S  F O R M U L A  F O R  B A R Y O N S  

Baryon masses are believed to arise from the masses and binding 
energies of their constituent quarks. However, we do not know the quark 
masses nor their energies inside hadrons in an exactly calculable form. On 
the other hand, in meson masses we have some information about interac- 
tions between quarks. Thus, if we knew some baryon mass M0, we could at 
least try to write another baryon mass M as M = M 0 + f ( M  o . . . .  ) where f is 
some function depending on mass M 0 and on some additional input, say, 
some meson masses. Moreover, the "coupling constant" of the second level 
should play some role in a baryon mass formula. However, there is an 
ambiguity present: should we use the "coupling constant" of the second 
level (1/10) or the "coupling constant" of the third-dimensional first level 
(1/7)? This choice is dictated by observed mass values only. The answer 
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turns out  to be that  we should use go = 1/7,  when writing our  phenomeno-  
logical mass formula  as 

M(Y• 1) = M o ( Y )  + 
G[ Mo(Y)+m] 2 

Mo(Y) 
(A.1) 

where M and M 0 are some ba ryon  masses, Y is the hypercharge,  rn is the 
mass of  some meson (K,  ~r, p, *1, or  7/'), and  G is the relevant coupl ing 
constant ,  given by  G=go/2", where go = 1 / 7  and  n---0, 1 . . . .  indicates that  
we are dealing with n th  radial excitation of the nucleon.  

TABLE II. Theoretical P-wave baryon spectrum resulting from equation (A. 1) 
Errors are based on  experimental errors of M 0 and  m.  

Particle Mex p (MeV) Mtheo r (MeV) Mo b m b 

A 1115.60• 
Y, 1193.06+0.12 a 
_-- 1318.1_0.6  a 
Z(1385) 1383.9 --+ 2.6 a 
-~(1533) 1533.4 --- 0.7 a 

(1672) 1672.2 • 0.4 
N(1470) 1390-- 1470 

n = l  
N(1470) 1390-- 1470 
A(1600) 
E(1660) 1580-  1690 
Z?? 
_,-?? 

-'-(1820) 1823 • 6 
fi?? 
N(1780) 1650-1750  

n = 2  
N(1780) 1650-  1750 
A(1860) 1850-1920  
~(1880) 
~?? 
- ? ?  

~?? 
~?? 

n = 3  
N??  

1115.14___0.06 N ~r 
1195.0 • 0.2 N K -  ~r 
1316.8---0,2 A ~r 
1386.4--- 1.3 N p 
1534.5• Y- K 
1674.7 • 0.7 ,~ K 
1470.3 • 0.6 A 

1470.0 • 0.4 ~ r/' 
1596 N(1470) ~r 
1632 N(1470) K - r r  
1715 N(1470) p 
1731 A(1596) ~r 
1830 ~(1632) K 
1935 -~(1730)?? K 
1802 A(1596) ~/ 

1779 Y(1632) n '  
1854 N(1780) qr 
1872 N(1780) K - ~ r  
1911 N(1780) p 
1951 A(1860) ~r 
1979 2(1872) K 
2060 -'-(1951)? K 

1970 A(1860) *1 

aExperimental  value is taken to be simple mean  of different charge states. 
has  input  values of M 0 and  m we have used simple means  of different charge 
states. 

CNot well established. 
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Starting from the nucleon, we can then generate the whole P-wave 
baryon spectrum very accurately. The resulting spectrum is presented in 
Table II. We will mention only some main points concerning the mass 
formula A. 1. 

(i) K, rr, and p generate states M which differ from M o by - 1 units of 
hypercharge Y; ~ and ff generate excited nucleon states which differ from 
M 0 by + 1 units of hypercharge. 

(ii) Octet Y./A states are somewhat problematic; Y. states are reached 
from the nucleon with m = M  K - M ~ ,  and the decuplet states with Y =  1 

(i.e., A states) do not appear with any reasonable combination of masses in 
equation (A.1). 

The connection of the mass formula (A.1) to the combinatorial 
hierarchy is admittedly weak and rests only on the equality of the hierarchy 
"coupling constant" and the quantity go appearing in equation (A.1). 
However, the form of the mass formula (A.1) is simple and its quality is 
very good-- in  general, errors relative to experimental values seem to be of 
the order 1 0 - 3 - 1 0  - 4  , depending on which charge states of mesons and 
baryons are used in the mass formula- -and  this makes its connection to 
the combinatorial hierarchy, though perhaps nonexistent, worth investigat- 
ing. 
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